skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dzubay, Alex"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resonance frequency monitoring can detect structural changes during progressive rock slope failure; however, reversible environmentally-driven frequency drifts may inhibit identification of permanent changes. Frequency drifts are commonly correlated with air temperature, lagging temperature changes by zero to 35–60 days. Here we report observations from two years of monitoring at a rock tower in Utah, USA where annual resonance frequency changes appear to precede air temperature cycles by ~35 days. Using correlations with meteorological data supplemented by numerical modeling, we identify changes in insolation as the primary driver of annual frequency drifts, giving rise to the negative lag time. Sparse in-situ insolation data show that the daily frequency increase lags sunrise by several hours, while frequencies decrease at sunset, responses we attribute to the west facing aspect of the tower. Modeled daily insolation patterns match frequency data for months when in-situ measurements are not available. Numerical models offer the advantage of predicting insolation patterns for different aspects of the rock tower, such as the west facing cliff where measurements would be challenging. Our study highlights the value of long-term datasets in identifying mechanisms driving environmentally associated frequency drifts, understanding that is crucial to facilitate detection of permanent changes during progressive failure. 
    more » « less
  2. Abstract Modal analysis of freestanding rock formations is crucial for evaluating their vibrational response to external stimuli, aiding accurate assessment of associated geohazards. Whereas conventional seismometers can be used to measure the translational components of normal modes, recent advances in rotational seismometer technology now allow direct measurement of the rotational components. We deployed a portable, three-component rotational seismometer for a short-duration experiment on a 36 m high sandstone tower located near Moab, Utah, in addition to conducting modal analysis using conventional seismic data and numerical modeling. Spectral analysis of rotation rate data resolved the first three natural frequencies of the tower (2.1, 3.1, and 5.9 Hz), and polarization analysis revealed the orientations of the rotation axes. Modal rotations were the strongest for the first two eigenmodes, which are mutually perpendicular, full-height bending modes with horizontal axes of rotation. The third mode is torsional with rotation about a subvertical axis. Measured natural frequencies and the orientations of displacements and rotation axes match our numerical models closely for these first three modes. In situ measurements of modal rotations are valuable at remote field sites with limited access, and contribute to an improved understanding of modal deformation, material properties, and landform response to vibration stimuli. 
    more » « less
  3. Abstract Thousands of rock arches are situated within the central Colorado Plateau—a region experiencing small- to moderate-magnitude contemporary seismicity. Recent anthropogenic activity has substantially increased the seismicity rate in some areas, raising questions about the potential for vibration damage of natural arches, many of which have high cultural value. However, predictions of the vibration response and potential for damage at a given site are limited by a lack of data describing spectral amplification of ground motion on these landforms. We analyzed 13 sandstone arches in Utah, computing site-to-reference spectral amplitude ratios from continuous ambient seismic data, and compared these to spectral ratios during earthquakes and teleseismic activity. We found peak ground velocities on arches at their dominant natural modes (in the range of 2–20 Hz) are ∼20–180 times the velocity on adjacent bedrock, due to amplification arising from slender geometry and low modal damping (0.8%–2.7%). Ambient spectral ratios are generally 1.2–2.0 times the coseismic spectral ratios. Because arches experience highly amplified ground motion, the range of earthquakes considered potentially damaging may need to be revised to include lower-magnitude events. Our results have implications for conservation management of these and other culturally valuable landforms. 
    more » « less
  4. Abstract The dynamic properties of freestanding rock towers are important inputs for seismic stability and vibration hazard assessments, however data describing the natural frequencies, mode shapes, and damping ratios of these landforms remain rare. We measured the ambient vibration of 14 sandstone and conglomerate rock towers and fins in Utah, United States, using broadband seismometers and nodal geophones. Fundamental frequencies vary between 0.8 and 15 Hz—inversely with tower height—and generally exhibit subhorizontal modal vectors oriented parallel to the minimum tower width. Modal damping ratios are low across all features, between 0.6% and 2.2%. We reproduced measured modal attributes in 3D numerical eigenfrequency models for 10 of the 14 landforms, showing that the fundamental mode of these features is full-height bending akin to a cantilever. Fin-like landforms commonly have a torsional second mode whereas tower-like features have a second full-height bending mode subperpendicular to the fundamental. In line with beam theory predictions, our data confirm that fundamental frequencies scale with the ratio of a tower’s width to its squared height. Compiled data from 18 other sites support our results, and taken together, provide guidance for estimating the modal properties of rock towers required for vibration risk assessment and paleoseismic shaking intensity analysis in different settings. 
    more » « less